organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1*H*-Benzotriazol-1-yl)-1-(4-fluorobenzoyl)ethyl 2,4-dichlorobenzoate

Sai Bi,^a Jing Li,^a Wu-Lan Zeng^b and Jun Wan^a*

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Weifang University, 261061 Weifang, Shandong, People's Republic of China Correspondence e-mail: gustchemistry@126.com

Received 3 September 2007; accepted 25 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.060; wR factor = 0.151; data-to-parameter ratio = 14.5.

In the title compound, $C_{22}H_{14}Cl_2FN_3O_3$, the two molecules in the asymmetric unit are linked into infinite chains along the *a* axis by intermolecular $C-H\cdots N$ and $C-H\cdots Cl$ hydrogen bonds.

Related literature

For related literature, see: Zhang *et al.* (2006); Allen *et al.* (1987).

Experimental

Crystal data $C_{22}H_{14}Cl_2FN_3O_3$ $M_r = 458.26$

Monoclinic, $P2_1/c$ a = 11.9859 (7) Å

b = 25.1527 (16) Å	
c = 13.8358 (9) Å	
$\beta = 98.6470 \ (10)^{\circ}$	
V = 4123.8 (4) Å ³	
Z = 8	

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.889, T_{\rm max} = 0.952$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 559 parameters $wR(F^2) = 0.151$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.22$ e Å⁻³8111 reflections $\Delta \rho_{min} = -0.17$ e Å⁻³

Mo $K\alpha$ radiation $\mu = 0.35 \text{ mm}^{-1}$

 $0.34 \times 0.30 \times 0.14$ mm

23035 measured reflections 8111 independent reflections

4644 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.039$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots$	A
$C9-H9A\cdots N3'^{i}$ $C4'-H26A\cdots C11^{ii}$ $C9'-H31B\cdots N3^{iii}$	0.97 0.93 0.97	2.46 2.73 2.58	3.191 (4) 3.632 (5) 3.323 (4)	132 164 134	
Symmetry codes: $-x, y + \frac{1}{2}, -z + \frac{3}{2}.$	(i) $-x - 1, y$	$-\frac{1}{2}, -z + \frac{3}{2};$	(ii) $-x - 1, y + \frac{1}{2}$	$\frac{1}{2}, -z + \frac{3}{2};$ (ii	i)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Natural Science Foundation of Shandong Province (grant Nos. Z2006B01 and Y2006B07).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2192).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, S.-S., Wan, J., Peng, Z.-Z. & Bi, S. (2006). Acta Cryst. E62, o4348-04349.

Acta Cryst. (2007). E63, o4192 [doi:10.1107/81600536807047046]

2-(1H-Benzotriazol-1-yl)-1-(4-fluorobenzoyl)ethyl 2,4-dichlorobenzoate

S. Bi, J. Li, W.-L. Zeng and J. Wan

Comment

Recently we have reported the structure of 3-(benzotriazol-1-yl)-1-(4-chlorophenyl)-1-oxopropan-2-yl 2-chlorobenzoate (II) (Zhang *et al.*, 2006). As part of our ongoing studies of searching for triazole derivatives with higher pharmacological activities, the title compound, (I), was synthesized and its structure is presented here.

All bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and are comparable with those in the related compound, (II). In the molecule of (I), the asymmetric unit contains two molecules, A and B. The benzotriazole system is essentially planar, with a dihedral of 0.70 (2) and 0.73 (2)/% between the triazole rings (N1—N3/C10/C11 and N1'-N3'/C10'/C11') and benzne rings (C10—C15 and C10'-C15') in A and B, respectively. In A, the mean plane of the benzotriazole group makes dihedral angles of 17.55 (2) and 17.02 (1)/% with the C1—C6 and C17—C22 benzene rings, respectively. The corresponding dihedral angles in B are 26.66 (1) and 11.21 (1)/%. The dihedral angles between the latter two benzene rings are 30.88 (2) and 32.44 (2)/% in A and B, respectively.

In the crystal structure, the intermolecular C9—H9A···N3', C9'-H31B···N3 and C4'-H26A···Cl1 hydrogen bonds link the molecules, forming infinite chains along the *a* axis. The packing is further stabilized by π - π interactions, with Cg1···Cg7 (*x*, 1/2 - y, -1/2 + z) and Cg2···Cg6 (-x, 1 - y, 2 - z) distances of 3.710 (1) and 3.661 (1) /%A, respectively (Cg1, Cg2, Cg6 and Cg7 are the centroids of the rings N1—N3/C10/C11, N1'-N3'/C10'/C11', C10'-C15' and C17—C22, respectively).

Experimental

The title compound was prepared according to the literature method of Zhang *et al.* (2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of six days.

Refinement

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ H atoms.

Figures

Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. A packing diagram of (I), viewed down the b axis. Hydrogen bonds are indicated by dashed lines.

2-(1H-Benzotriazol-1-yl)-1-(4-fluorobenzoyl)ethyl 2,4-dichlorobenzoate

Crystal data	
$C_{22}H_{14}Cl_2FN_3O_3$	$F_{000} = 1872$
$M_r = 458.26$	$D_{\rm x} = 1.476 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 11.9859 (7) Å	Cell parameters from 3056 reflections
<i>b</i> = 25.1527 (16) Å	$\theta = 2.4 - 21.2^{\circ}$
<i>c</i> = 13.8358 (9) Å	$\mu = 0.35 \text{ mm}^{-1}$
$\beta = 98.6470 \ (10)^{\circ}$	T = 293 (2) K
$V = 4123.8 (4) \text{ Å}^3$	Block, colourless
Z = 8	$0.34 \times 0.30 \times 0.14 \text{ mm}$

Data collection

Siemens SMART 1000 CCD area-detector diffractometer	8111 independent reflections
Radiation source: fine-focus sealed tube	4644 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.6^{\circ}$
ω scans	$h = -14 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -31 \rightarrow 31$
$T_{\min} = 0.889, \ T_{\max} = 0.952$	$l = -16 \rightarrow 17$
23035 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_0^2) + (0.0623P)^2 + 0.2266P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
8111 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
559 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1'	0.34033 (7)	0.37234 (3)	0.57244 (7)	0.0729 (3)
Cl1	-0.84381 (7)	0.32434 (3)	0.90731 (7)	0.0769 (3)
Cl2'	0.03377 (9)	0.22597 (3)	0.62058 (7)	0.0860 (3)
Cl2	-0.54316 (9)	0.47425 (3)	0.86955 (8)	0.0875 (3)
O2	-0.63982 (17)	0.22146 (7)	0.75847 (14)	0.0571 (6)
N1	-0.5387 (2)	0.15190 (9)	0.61983 (17)	0.0516 (6)
N2'	-0.0207 (2)	0.59177 (10)	0.86134 (19)	0.0615 (7)
O2'	0.13449 (18)	0.47776 (7)	0.71538 (16)	0.0658 (6)
N1'	0.0338 (2)	0.54473 (9)	0.85562 (17)	0.0496 (6)
O3	-0.7272 (2)	0.22071 (8)	0.89038 (16)	0.0714 (7)
C18	-0.7131 (2)	0.33972 (11)	0.8769 (2)	0.0484 (7)
C17	-0.6439 (3)	0.30175 (11)	0.8436 (2)	0.0483 (7)
C16	-0.6762 (3)	0.24432 (11)	0.8364 (2)	0.0515 (8)
C19	-0.6818 (3)	0.39220 (11)	0.8847 (2)	0.0571 (8)
H19A	-0.7293	0.4172	0.9067	0.068*
N2	-0.4831 (3)	0.10495 (10)	0.6184 (2)	0.0675 (8)
N3'	-0.1209 (2)	0.58228 (11)	0.8810 (2)	0.0672 (8)
C22	-0.5418 (3)	0.31834 (12)	0.8189 (2)	0.0627 (9)
H22A	-0.4944	0.2935	0.7962	0.075*
C8	-0.6625 (3)	0.16534 (10)	0.7475 (2)	0.0527 (8)
H8A	-0.7393	0.1580	0.7601	0.063*
O3'	0.2331 (2)	0.47809 (9)	0.59088 (18)	0.0876 (8)
C9	-0.6533 (2)	0.15132 (12)	0.6422 (2)	0.0579 (8)
H9A	-0.6850	0.1162	0.6282	0.069*
H9B	-0.6984	0.1763	0.5995	0.069*
C19'	0.1745 (3)	0.30608 (12)	0.5972 (2)	0.0557 (8)
H41A	0.2215	0.2800	0.5778	0.067*
C11	-0.3738 (3)	0.16814 (14)	0.5827 (2)	0.0616 (9)
C8'	0.1612 (3)	0.53319 (11)	0.7308 (2)	0.0557 (8)
H30A	0.2394	0.5395	0.7211	0.067*
C10'	-0.0345 (2)	0.50342 (11)	0.8726 (2)	0.0476 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	-0.4905 (3)	0.24709 (13)	0.5867 (2)	0.0660 (9)
H15A	-0.5580	0.2631	0.5960	0.079*
C9'	0.1490 (2)	0.54536 (11)	0.8360 (2)	0.0536 (8)
H31A	0.1924	0.5195	0.8781	0.064*
H31B	0.1811	0.5801	0.8528	0.064*
C10	-0.4737 (2)	0.19277 (11)	0.5968 (2)	0.0482 (7)
N3	-0.3843 (3)	0.11433 (12)	0.5964 (2)	0.0741 (8)
C18'	0.2077 (2)	0.35877 (12)	0.6012 (2)	0.0494 (7)
C15'	-0.0207 (3)	0.44841 (12)	0.8769 (2)	0.0601 (8)
H37A	0.0461	0.4322	0.8662	0.072*
C16'	0.1755 (3)	0.45477 (12)	0.6397 (2)	0.0600 (9)
C17'	0.1394 (3)	0.39824 (12)	0.6302 (2)	0.0540 (8)
C20'	0.0719 (3)	0.29273 (12)	0.6219 (2)	0.0615 (9)
C21'	-0.0002 (3)	0.33062 (14)	0.6491 (3)	0.0756 (10)
H43A	-0.0704	0.3213	0.6646	0.091*
C22'	0.0350 (3)	0.38318 (13)	0.6525 (2)	0.0724 (10)
H44A	-0.0130	0.4092	0.6704	0.087*
C21	-0.5089 (3)	0.37078 (13)	0.8271 (2)	0.0675 (9)
H21A	-0.4397	0.3812	0.8107	0.081*
C20	-0.5798 (3)	0.40763 (12)	0.8599 (2)	0.0585 (9)
C1'	0.2164 (3)	0.64490 (13)	0.6779 (2)	0.0706 (10)
H23A	0.2770	0.6217	0.6930	0.085*
C11'	-0.1338 (3)	0.52797 (13)	0.8890 (2)	0.0548 (8)
C7'	0.0830 (3)	0.56708 (14)	0.6600 (2)	0.0637 (9)
C1	-0.7148 (3)	0.05963 (13)	0.8374 (2)	0.0688 (9)
H1A	-0.7747	0.0833	0.8235	0.083*
C6'	0.1092 (3)	0.62478 (13)	0.6561 (2)	0.0573 (8)
C12'	-0.2249 (3)	0.49825 (16)	0.9085 (2)	0.0719 (10)
H34A	-0.2922	0.5143	0.9183	0.086*
C6	-0.6064 (3)	0.07765 (13)	0.8378 (2)	0.0598 (8)
F1'	0.1635 (3)	0.78465 (9)	0.6575 (2)	0.1505 (12)
C13'	-0.2117 (3)	0.44440 (17)	0.9129 (3)	0.0781 (11)
H35A	-0.2715	0.4235	0.9263	0.094*
C7	-0.5786 (3)	0.13398 (12)	0.8188 (2)	0.0582 (8)
C14	-0.4023 (4)	0.27588 (15)	0.5621 (3)	0.0849 (12)
H14A	-0.4098	0.3125	0.5537	0.102*
01	-0.4902 (2)	0.15392 (10)	0.85322 (19)	0.0873 (8)
C14'	-0.1108 (3)	0.41961 (14)	0.8979 (2)	0.0760 (11)
H36A	-0.1052	0.3828	0.9022	0.091*
C5	-0.5184 (4)	0.04214 (17)	0.8588 (3)	0.0987 (14)
H5B	-0.4446	0.0539	0.8603	0.118*
01'	-0.0013 (2)	0.54804 (11)	0.6142 (2)	0.1042 (9)
F1	-0.6685 (3)	-0.07828 (10)	0.8933 (2)	0.1785 (14)
C5'	0.0202 (3)	0.65950 (17)	0.6320 (3)	0.0869 (12)
H27A	-0.0525	0.6462	0.6157	0.104*
C12	-0.2841 (3)	0.19776 (18)	0.5579 (3)	0.0869 (12)
H12A	-0.2168	0.1819	0.5478	0.104*
C4'	0.0373 (5)	0.7126 (2)	0.6317 (3)	0.1026 (16)
H26A	-0.0228	0.7359	0.6154	0.123*

C2'	0.2360 (4)	0.69905 (14)	0.6777 (3)	0.0869 (12)
H24A	0.3086	0.7128	0.6919	0.104*
C13	-0.3001 (4)	0.25110 (19)	0.5493 (3)	0.0924 (13)
H13A	-0.2412	0.2721	0.5343	0.111*
C3'	0.1444 (5)	0.73137 (14)	0.6558 (3)	0.0924 (14)
C4	-0.5384 (5)	-0.0103 (2)	0.8775 (4)	0.125 (2)
H4A	-0.4791	-0.0343	0.8915	0.150*
C2	-0.7365 (4)	0.00691 (15)	0.8574 (3)	0.0894 (12)
H2B	-0.8097	-0.0051	0.8586	0.107*
C3	-0.6469 (6)	-0.02618 (16)	0.8751 (3)	0.1099 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1'	0.0613 (6)	0.0613 (5)	0.1003 (7)	-0.0031 (4)	0.0262 (5)	-0.0085 (5)
Cl1	0.0613 (6)	0.0558 (5)	0.1190 (8)	-0.0036 (4)	0.0309 (5)	-0.0132 (5)
Cl2'	0.1007 (8)	0.0586 (5)	0.1043 (8)	-0.0226 (5)	0.0342 (6)	-0.0107 (5)
Cl2	0.0940 (7)	0.0515 (5)	0.1151 (8)	-0.0223 (5)	0.0093 (6)	-0.0061 (5)
02	0.0615 (14)	0.0436 (11)	0.0705 (14)	-0.0052 (10)	0.0240 (11)	-0.0096 (10)
N1	0.0485 (16)	0.0438 (14)	0.0627 (17)	0.0056 (12)	0.0092 (13)	-0.0101 (11)
N2'	0.0602 (19)	0.0478 (15)	0.0771 (19)	0.0116 (13)	0.0125 (15)	-0.0036 (13)
O2'	0.0745 (16)	0.0463 (12)	0.0844 (16)	-0.0044 (11)	0.0371 (13)	-0.0144 (11)
N1'	0.0458 (16)	0.0407 (13)	0.0635 (16)	0.0066 (12)	0.0115 (12)	-0.0046 (11)
03	0.0970 (19)	0.0486 (13)	0.0766 (16)	-0.0012 (12)	0.0394 (14)	0.0061 (11)
C18	0.0489 (18)	0.0456 (16)	0.0498 (18)	-0.0025 (14)	0.0044 (14)	-0.0019 (13)
C17	0.0533 (19)	0.0433 (16)	0.0473 (18)	0.0017 (15)	0.0045 (15)	0.0012 (13)
C16	0.055 (2)	0.0447 (17)	0.056 (2)	0.0042 (15)	0.0101 (16)	0.0013 (15)
C19	0.059 (2)	0.0455 (18)	0.066 (2)	0.0005 (16)	0.0071 (17)	-0.0089 (14)
N2	0.070 (2)	0.0490 (16)	0.086 (2)	0.0127 (14)	0.0215 (16)	-0.0113 (14)
N3'	0.0570 (19)	0.0638 (19)	0.082 (2)	0.0165 (15)	0.0132 (15)	0.0005 (14)
C22	0.063 (2)	0.057 (2)	0.071 (2)	0.0001 (17)	0.0187 (18)	-0.0089 (16)
C8	0.0483 (19)	0.0407 (16)	0.071 (2)	-0.0038 (14)	0.0137 (16)	-0.0086 (14)
O3'	0.122 (2)	0.0588 (15)	0.0950 (19)	-0.0115 (15)	0.0602 (18)	-0.0053 (13)
C9	0.0440 (19)	0.0563 (19)	0.072 (2)	-0.0048 (15)	0.0063 (16)	-0.0117 (16)
C19'	0.056 (2)	0.0502 (18)	0.062 (2)	0.0015 (16)	0.0133 (16)	-0.0095 (15)
C11	0.053 (2)	0.072 (2)	0.062 (2)	0.0070 (18)	0.0151 (17)	-0.0054 (17)
C8'	0.051 (2)	0.0437 (17)	0.075 (2)	-0.0029 (14)	0.0180 (17)	-0.0069 (15)
C10'	0.0419 (18)	0.0481 (17)	0.0527 (19)	0.0002 (14)	0.0068 (14)	-0.0047 (14)
C15	0.062 (2)	0.061 (2)	0.075 (2)	0.0047 (18)	0.0107 (19)	0.0041 (17)
C9'	0.0444 (19)	0.0430 (16)	0.073 (2)	-0.0008 (14)	0.0070 (16)	-0.0054 (14)
C10	0.0468 (19)	0.0490 (17)	0.0489 (18)	0.0030 (15)	0.0073 (14)	-0.0020 (14)
N3	0.066 (2)	0.067 (2)	0.093 (2)	0.0230 (16)	0.0239 (17)	-0.0058 (16)
C18'	0.0493 (19)	0.0549 (18)	0.0448 (17)	0.0015 (15)	0.0093 (14)	-0.0021 (14)
C15'	0.063 (2)	0.0461 (18)	0.072 (2)	0.0027 (16)	0.0140 (17)	-0.0036 (15)
C16'	0.068 (2)	0.0528 (19)	0.063 (2)	0.0029 (17)	0.0217 (18)	-0.0043 (16)
C17'	0.060 (2)	0.0523 (18)	0.0528 (19)	-0.0006 (16)	0.0170 (16)	-0.0047 (14)
C20'	0.072 (2)	0.0539 (19)	0.060 (2)	-0.0055 (18)	0.0148 (18)	-0.0073 (15)
C21'	0.072 (3)	0.073 (2)	0.089 (3)	-0.018 (2)	0.035 (2)	-0.018 (2)

C22'	0.072 (3)	0.066 (2)	0.086 (3)	-0.0002 (19)	0.032 (2)	-0.0215 (18)
C21	0.061 (2)	0.065 (2)	0.078 (2)	-0.0186 (18)	0.0159 (19)	-0.0062 (18)
C20	0.072 (2)	0.0439 (17)	0.058 (2)	-0.0110 (17)	0.0012 (18)	-0.0030 (14)
C1'	0.069 (2)	0.052 (2)	0.091 (3)	0.0116 (18)	0.009 (2)	0.0164 (18)
C11'	0.0436 (19)	0.066 (2)	0.054 (2)	0.0038 (17)	0.0053 (15)	0.0008 (15)
C7'	0.055 (2)	0.072 (2)	0.064 (2)	0.0011 (18)	0.0082 (18)	-0.0093 (18)
C1	0.079 (3)	0.052 (2)	0.073 (2)	0.0033 (18)	0.0007 (19)	0.0020 (16)
C6'	0.059 (2)	0.063 (2)	0.0495 (19)	0.0142 (17)	0.0095 (16)	0.0060 (15)
C12'	0.052 (2)	0.090 (3)	0.073 (2)	0.002 (2)	0.0082 (18)	0.003 (2)
C6	0.067 (2)	0.058 (2)	0.056 (2)	0.0123 (18)	0.0129 (17)	-0.0050 (15)
F1'	0.261 (4)	0.0524 (14)	0.151 (2)	0.0348 (18)	0.075 (2)	0.0217 (14)
C13'	0.063 (3)	0.098 (3)	0.075 (3)	-0.022 (2)	0.016 (2)	0.007 (2)
C7	0.057 (2)	0.058 (2)	0.062 (2)	0.0043 (17)	0.0129 (17)	-0.0143 (16)
C14	0.101 (3)	0.067 (2)	0.092 (3)	-0.007 (2)	0.029 (2)	0.012 (2)
01	0.0586 (16)	0.0885 (18)	0.108 (2)	-0.0064 (14)	-0.0091 (14)	-0.0116 (15)
C14'	0.095 (3)	0.058 (2)	0.078 (3)	-0.017 (2)	0.020 (2)	0.0029 (18)
C5	0.098 (3)	0.088 (3)	0.119 (4)	0.041 (3)	0.045 (3)	0.026 (3)
01'	0.083 (2)	0.111 (2)	0.109 (2)	-0.0135 (17)	-0.0187 (17)	-0.0123 (17)
F1	0.280 (4)	0.0628 (16)	0.199 (3)	0.014 (2)	0.057 (3)	0.0405 (18)
C5'	0.077 (3)	0.101 (3)	0.084 (3)	0.036 (2)	0.016 (2)	0.025 (2)
C12	0.065 (3)	0.108 (3)	0.095 (3)	0.006 (2)	0.034 (2)	-0.001 (2)
C4'	0.123 (4)	0.088 (3)	0.104 (3)	0.059 (3)	0.039 (3)	0.033 (3)
C2'	0.105 (3)	0.057 (2)	0.096 (3)	-0.001 (2)	0.008 (2)	0.015 (2)
C13	0.086 (3)	0.109 (4)	0.089 (3)	-0.032 (3)	0.033 (2)	0.004 (2)
C3'	0.164 (5)	0.044 (2)	0.077 (3)	0.028 (3)	0.041 (3)	0.0142 (19)
C4	0.144 (5)	0.090 (4)	0.152 (5)	0.065 (4)	0.062 (4)	0.046 (3)
C2	0.115 (3)	0.063 (2)	0.086 (3)	-0.014 (2)	0.002 (3)	0.005 (2)
C3	0.180 (6)	0.053 (3)	0.102 (3)	0.023 (3)	0.039 (4)	0.015 (2)
Coomatria	$namentans (1 \circ)$					
Geometric						

arameters (Å, °) : pa

1.730 (3)	C18'—C17'	1.384 (4)
1.726 (3)	C15'—C14'	1.368 (4)
1.740 (3)	С15'—Н37А	0.9300
1.732 (3)	C16'—C17'	1.487 (4)
1.351 (3)	C17'—C22'	1.385 (4)
1.441 (3)	C20'—C21'	1.376 (4)
1.357 (3)	C21'—C22'	1.387 (4)
1.358 (3)	C21'—H43A	0.9300
1.453 (3)	C22'—H44A	0.9300
1.293 (3)	C21—C20	1.379 (4)
1.359 (3)	C21—H21A	0.9300
1.352 (3)	C1'—C6'	1.371 (4)
1.439 (3)	C1'—C2'	1.382 (4)
1.365 (3)	C1'—H23A	0.9300
1.447 (3)	C11'—C12'	1.383 (4)
1.192 (3)	C7'—O1'	1.207 (4)
1.372 (4)	C7'—C6'	1.488 (4)
1.389 (4)	C1—C6	1.375 (4)
	1.730 (3) 1.726 (3) 1.740 (3) 1.732 (3) 1.351 (3) 1.351 (3) 1.357 (3) 1.358 (3) 1.453 (3) 1.293 (3) 1.359 (3) 1.352 (3) 1.365 (3) 1.447 (3) 1.192 (3) 1.372 (4) 1.389 (4)	1.730(3) $C18'-C17'$ $1.726(3)$ $C15'-C14'$ $1.740(3)$ $C15'-H37A$ $1.732(3)$ $C16'-C17'$ $1.351(3)$ $C17'-C22'$ $1.441(3)$ $C20'-C21'$ $1.357(3)$ $C21'-C22'$ $1.358(3)$ $C21'-H43A$ $1.453(3)$ $C21'-H43A$ $1.453(3)$ $C21-C20$ $1.359(3)$ $C21-H21A$ $1.352(3)$ $C1'-C6'$ $1.439(3)$ $C1'-C2'$ $1.365(3)$ $C1'-H23A$ $1.447(3)$ $C11'-C12'$ $1.192(3)$ $C7'-O1'$ $1.372(4)$ $C7'-C6'$ $1.389(4)$ $C1-C6$

C17—C22	1.383 (4)	C1—C2	1.387 (4)
C17—C16	1.495 (4)	C1—H1A	0.9300
C19—C20	1.374 (4)	C6'—C5'	1.380 (4)
С19—Н19А	0.9300	C12'—C13'	1.364 (5)
N2—N3	1.288 (4)	C12'—H34A	0.9300
N3'—C11'	1.381 (4)	C6—C5	1.379 (5)
C22—C21	1.377 (4)	C6—C7	1.488 (4)
C22—H22A	0.9300	F1'—C3'	1.359 (4)
C8—C9	1.518 (4)	C13'—C14'	1.404 (5)
C8—C7	1.519 (4)	C13'—H35A	0.9300
C8—H8A	0.9800	C7—O1	1.204 (4)
O3'—C16'	1.191 (3)	C14—C13	1.409 (5)
С9—Н9А	0.9700	C14—H14A	0.9300
С9—Н9В	0.9700	C14'—H36A	0.9300
C19'—C20'	1.368 (4)	C5—C4	1.372 (6)
C19'—C18'	1.382 (4)	С5—Н5В	0.9300
C19'—H41A	0.9300	F1—C3	1.366 (5)
C11—N3	1.375 (4)	C5'—C4'	1.353 (6)
C11—C10	1.388 (4)	С5'—Н27А	0.9300
C11—C12	1.392 (5)	C12—C13	1.358 (5)
C8'—C7'	1.514 (4)	C12—H12A	0.9300
C8'—C9'	1.515 (4)	C4'—C3'	1.361 (6)
C8'—H30A	0.9800	C4'—H26A	0.9300
C10'—C11'	1.389 (4)	C2'—C3'	1.363 (6)
C10'—C15'	1.394 (4)	C2'—H24A	0.9300
C15-C14	1.365 (5)	C13—H13A	0.9300
C15-C10	1.385 (4)	C4—C3	1.357 (7)
C15—H15A	0.9300	C4—H4A	0.9300
C9'—H31A	0.9700	C2—C3	1.352 (6)
С9'—Н31В	0.9700	C2—H2B	0.9300
C16—O2—C8	115.0 (2)	C19'—C20'—C21'	121.6 (3)
C10—N1—N2	110.8 (2)	C19'—C20'—C12'	118.6 (2)
C10—N1—C9	130.7 (2)	C21'—C20'—C12'	119.8 (3)
N2—N1—C9	118.4 (3)	C20'—C21'—C22'	118.0 (3)
N3'—N2'—N1'	108.7 (2)	C20'—C21'—H43A	121.0
C16'—O2'—C8'	115.5 (2)	C22'—C21'—H43A	121.0
N2'—N1'—C10'	110.3 (2)	C17'—C22'—C21'	122.2 (3)
N2'—N1'—C9'	118.8 (2)	C17'—C22'—H44A	118.9
C10'—N1'—C9'	130.9 (2)	C21'—C22'—H44A	118.9
C19—C18—C17	121.2 (3)	C22—C21—C20	119.2 (3)
C19—C18—Cl1	116.4 (2)	C22—C21—H21A	120.4
C17—C18—Cl1	122.5 (2)	C20-C21-H21A	120.4
C22—C17—C18	118.0 (3)	C19—C20—C21	120.5 (3)
C22—C17—C16	120.3 (3)	C19—C20—Cl2	118.6 (3)
C18—C17—C16	121.7 (3)	C21—C20—Cl2	120.9 (3)
O3—C16—O2	123.1 (3)	C6'—C1'—C2'	121.1 (3)
O3—C16—C17	126.3 (3)	C6'—C1'—H23A	119.4
O2—C16—C17	110.7 (3)	C2'—C1'—H23A	119.4
C18—C19—C20	119.7 (3)	N3'—C11'—C12'	130.7 (3)

C18—C19—H19A	120.2	N3'—C11'—C10'	108.5 (3)
С20—С19—Н19А	120.2	C12'—C11'—C10'	120.8 (3)
N3—N2—N1	108.4 (3)	O1'—C7'—C6'	122.2 (3)
N2'—N3'—C11'	108.5 (2)	O1'—C7'—C8'	120.3 (3)
C21—C22—C17	121.5 (3)	C6'—C7'—C8'	117.3 (3)
C21—C22—H22A	119.3	C6—C1—C2	121.4 (4)
C17—C22—H22A	119.3	C6—C1—H1A	119.3
O2—C8—C9	106.8 (2)	C2—C1—H1A	119.3
O2—C8—C7	110.1 (2)	C1'—C6'—C5'	119.0 (3)
C9—C8—C7	111.5 (2)	C1'—C6'—C7'	123.3 (3)
O2—C8—H8A	109.5	C5'—C6'—C7'	117.8 (3)
С9—С8—Н8А	109.5	C13'—C12'—C11'	117.2 (3)
С7—С8—Н8А	109.5	C13'—C12'—H34A	121.4
N1—C9—C8	114.2 (2)	C11'—C12'—H34A	121.4
N1—C9—H9A	108.7	C1—C6—C5	118.6 (3)
С8—С9—Н9А	108.7	C1—C6—C7	123.3 (3)
N1—C9—H9B	108.7	C5—C6—C7	118.0 (4)
С8—С9—Н9В	108.7	C12'—C13'—C14'	122.0 (3)
Н9А—С9—Н9В	107.6	C12'—C13'—H35A	119.0
C20'—C19'—C18'	119.3 (3)	C14'—C13'—H35A	119.0
C20'—C19'—H41A	120.3	O1—C7—C6	122.3 (3)
C18'—C19'—H41A	120.3	O1—C7—C8	119.8 (3)
N3—C11—C10	108.7 (3)	C6—C7—C8	117.7 (3)
N3—C11—C12	130.6 (3)	C15—C14—C13	121.1 (4)
C10-C11-C12	120.7 (3)	C15—C14—H14A	119.4
O2'—C8'—C7'	110.3 (3)	C13—C14—H14A	119.4
O2'—C8'—C9'	106.7 (2)	C15'—C14'—C13'	121.5 (3)
C7'—C8'—C9'	111.6 (3)	C15'—C14'—H36A	119.3
O2'—C8'—H30A	109.4	C13'—C14'—H36A	119.3
C7'—C8'—H30A	109.4	C4—C5—C6	120.8 (4)
C9'—C8'—H30A	109.4	С4—С5—Н5В	119.6
N1'—C10'—C11'	103.9 (3)	С6—С5—Н5В	119.6
N1'	133.8 (3)	C4'—C5'—C6'	120.9 (4)
C11'—C10'—C15'	122.3 (3)	C4'—C5'—H27A	119.5
C14—C15—C10	116.2 (3)	Сб'—С5'—Н27А	119.5
C14—C15—H15A	121.9	C13—C12—C11	116.5 (4)
C10—C15—H15A	121.9	C13—C12—H12A	121.8
N1'—C9'—C8'	114.3 (2)	C11—C12—H12A	121.8
N1'—C9'—H31A	108.7	C5'—C4'—C3'	118.6 (4)
C8'—C9'—H31A	108.7	C5'—C4'—H26A	120.7
N1'—C9'—H31B	108.7	C3'—C4'—H26A	120.7
C8'—C9'—H31B	108.7	C3'—C2'—C1'	117.2 (4)
H31A—C9'—H31B	107.6	C3'—C2'—H24A	121.4
N1—C10—C15	133.7 (3)	C1'—C2'—H24A	121.4
N1—C10—C11	103.5 (3)	C12—C13—C14	122.7 (4)
C15—C10—C11	122.8 (3)	C12—C13—H13A	118.7
N2—N3—C11	108.6 (3)	C14—C13—H13A	118.7
C19'—C18'—C17'	121.3 (3)	F1'—C3'—C4'	119.7 (5)
C19'—C18'—C11'	116.7 (2)	F1'—C3'—C2'	117.2 (5)

C17'—C18'—C11'	122.0 (2)	C4'—C3'—C2'	123.1 (4)
C14'—C15'—C10'	116.2 (3)	C3—C4—C5	118.2 (4)
С14'—С15'—Н37А	121.9	C3—C4—H4A	120.9
С10'—С15'—Н37А	121.9	C5—C4—H4A	120.9
O3'—C16'—O2'	122.6 (3)	C3—C2—C1	117.2 (4)
O3'—C16'—C17'	127.4 (3)	C3—C2—H2B	121.4
O2'—C16'—C17'	110.1 (3)	C1—C2—H2B	121.4
C18'—C17'—C22'	117.5 (3)	C2—C3—C4	123.8 (4)
C18'—C17'—C16'	122.3 (3)	C2—C3—F1	117.2 (5)
C22'—C17'—C16'	120.2 (3)	C4—C3—F1	119.0 (5)
N3'—N2'—N1'—C10'	-0.2 (3)	C18'—C19'—C20'—C12'	-177.7 (2)
N3'—N2'—N1'—C9'	-178.9 (2)	C19'—C20'—C21'—C22'	-1.2 (5)
C19—C18—C17—C22	0.3 (4)	Cl2'—C20'—C21'—C22'	177.8 (3)
Cl1—C18—C17—C22	178.4 (2)	C18'—C17'—C22'—C21'	1.7 (5)
C19-C18-C17-C16	178.9 (3)	C16'—C17'—C22'—C21'	-177.0 (3)
Cl1—C18—C17—C16	-2.9 (4)	C20'—C21'—C22'—C17'	-0.3 (5)
C8—O2—C16—O3	-2.9 (4)	C17—C22—C21—C20	-0.6 (5)
C8—O2—C16—C17	177.4 (2)	C18—C19—C20—C21	0.1 (5)
C22—C17—C16—O3	144.0 (3)	C18—C19—C20—Cl2	179.4 (2)
C18—C17—C16—O3	-34.6 (5)	C22—C21—C20—C19	0.4 (5)
C22—C17—C16—O2	-36.3 (4)	C22—C21—C20—Cl2	-178.9 (2)
C18—C17—C16—O2	145.0 (3)	N2'—N3'—C11'—C12'	-179.7 (3)
C17-C18-C19-C20	-0.4 (4)	N2'—N3'—C11'—C10'	-0.2 (3)
Cl1—C18—C19—C20	-178.7 (2)	N1'—C10'—C11'—N3'	0.1 (3)
C10—N1—N2—N3	0.8 (3)	C15'—C10'—C11'—N3'	179.2 (3)
C9—N1—N2—N3	179.5 (2)	N1'-C10'-C11'-C12'	179.6 (3)
N1'—N2'—N3'—C11'	0.3 (3)	C15'—C10'—C11'—C12'	-1.3 (5)
C18—C17—C22—C21	0.3 (5)	O2'—C8'—C7'—O1'	13.7 (4)
C16-C17-C22-C21	-178.4 (3)	C9'—C8'—C7'—O1'	-104.7 (4)
C16—O2—C8—C9	161.2 (2)	O2'—C8'—C7'—C6'	-171.4 (2)
C16—O2—C8—C7	-77.6 (3)	C9'—C8'—C7'—C6'	70.2 (3)
C10—N1—C9—C8	-82.4 (4)	C2'—C1'—C6'—C5'	1.2 (5)
N2—N1—C9—C8	99.1 (3)	C2'—C1'—C6'—C7'	-176.9 (3)
O2—C8—C9—N1	71.7 (3)	O1'—C7'—C6'—C1'	-157.0 (4)
C7—C8—C9—N1	-48.7 (3)	C8'—C7'—C6'—C1'	28.3 (4)
C16'—O2'—C8'—C7'	79.9 (3)	O1'—C7'—C6'—C5'	24.8 (5)
C16'—O2'—C8'—C9'	-158.7 (3)	C8'—C7'—C6'—C5'	-149.9 (3)
N2'—N1'—C10'—C11'	0.1 (3)	N3'—C11'—C12'—C13'	-179.3 (3)
C9'—N1'—C10'—C11'	178.5 (3)	C10'—C11'—C12'—C13'	1.3 (5)
N2'—N1'—C10'—C15'	-178.9 (3)	C2—C1—C6—C5	-0.2 (5)
C9'—N1'—C10'—C15'	-0.4 (5)	C2—C1—C6—C7	-178.7 (3)
N2'—N1'—C9'—C8'	-100.9 (3)	C11'—C12'—C13'—C14'	-0.3 (5)
C10'—N1'—C9'—C8'	80.8 (4)	C1—C6—C7—O1	151.4 (3)
O2'—C8'—C9'—N1'	-70.1 (3)	C5—C6—C7—O1	-27.2 (5)
C7'—C8'—C9'—N1'	50.5 (3)	C1—C6—C7—C8	-33.1 (4)
N2-N1-C10-C15	178.8 (3)	C5—C6—C7—C8	148.3 (3)
C9—N1—C10—C15	0.3 (5)	O2—C8—C7—O1	-20.7 (4)
N2-N1-C10-C11	-1.0 (3)	C9—C8—C7—O1	97.6 (3)
C9—N1—C10—C11	-179.5 (3)	O2—C8—C7—C6	163.7 (2)

C14—C15—C10—N1	180.0 (3)	C9—C8—C7—C6	-77.9 (3)
C14—C15—C10—C11	-0.3 (5)	C10-C15-C14-C13	-0.7 (5)
N3—C11—C10—N1	0.8 (3)	C10'—C15'—C14'—C13'	0.7 (5)
C12-C11-C10-N1	-179.7 (3)	C12'—C13'—C14'—C15'	-0.7 (5)
N3-C11-C10-C15	-179.0 (3)	C1—C6—C5—C4	1.0 (6)
C12-C11-C10-C15	0.5 (5)	C7—C6—C5—C4	179.6 (4)
N1—N2—N3—C11	-0.2 (4)	C1'—C6'—C5'—C4'	-1.5 (5)
C10-C11-N3-N2	-0.4 (4)	C7'—C6'—C5'—C4'	176.8 (3)
C12—C11—N3—N2	-179.8 (3)	N3-C11-C12-C13	179.8 (4)
C20'—C19'—C18'—C17'	0.2 (4)	C10-C11-C12-C13	0.4 (5)
C20'—C19'—C18'—C11'	178.1 (2)	C6'—C5'—C4'—C3'	0.0 (6)
N1'-C10'-C15'-C14'	179.0 (3)	C6'—C1'—C2'—C3'	0.5 (5)
C11'-C10'-C15'-C14'	0.2 (4)	C11-C12-C13-C14	-1.5 (6)
C8'—O2'—C16'—O3'	2.5 (5)	C15-C14-C13-C12	1.7 (6)
C8'—O2'—C16'—C17'	-178.4 (3)	C5'—C4'—C3'—F1'	-179.0 (3)
C19'—C18'—C17'—C22'	-1.7 (4)	C5'—C4'—C3'—C2'	1.9 (7)
Cl1'—C18'—C17'—C22'	-179.4 (2)	C1'—C2'—C3'—F1'	178.8 (3)
C19'—C18'—C17'—C16'	177.0 (3)	C1'—C2'—C3'—C4'	-2.1 (6)
Cl1'—C18'—C17'—C16'	-0.8 (4)	C6—C5—C4—C3	-0.2 (7)
O3'—C16'—C17'—C18'	34.4 (5)	C6-C1-C2-C3	-1.4 (6)
O2'—C16'—C17'—C18'	-144.7 (3)	C1—C2—C3—C4	2.3 (7)
O3'—C16'—C17'—C22'	-147.0 (4)	C1-C2-C3-F1	-179.0 (3)
O2'—C16'—C17'—C22'	33.9 (4)	C5—C4—C3—C2	-1.5 (8)
C18'—C19'—C20'—C21'	1.2 (5)	C5-C4-C3-F1	179.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9—H9A···N3 ^{·i}	0.97	2.46	3.191 (4)	132
C4'—H26A…Cl1 ⁱⁱ	0.93	2.73	3.632 (5)	164
C9'—H31B···N3 ⁱⁱⁱ	0.97	2.58	3.323 (4)	134
Symmetry codes: (i) $-x-1$, $y-1/2$, $-z+3/2$; (ii) $-x-1$, $y+1/2$, $-z+3/2$; (iii) $-x$, $y+1/2$, $-z+3/2$.				

